

G ResearchGate

g Google Scholar

ACADEMIC BACKGROUND

2021 – present	Research Assistant - PhD Student	Institute for Software and Systems Engineering, TU Clausthal, DE Research Training Group CircularLIB, TU Braunschweig, DE
	Thesis title: Physics-Informed Machine Le	· · · · · · · · · · · · · · · · · · ·
2020 - 2021	Visiting Researcher Focus on Machine Learning for Turbulence	KTH Royal Institute of Technology, SE
2018 – 2020	Researcher Focus on Machine Learning for Fluid Dyn	University of Tehran, IR amics
2012 – 2015	Master's Degree in Aerospace Engineer Majoring in Aerodynamics	ing University of Tehran, IR
2007 - 2012	Bachelor's Degree in Mechanical Engine Majoring in Mechanics	eering University of Mazandaran, IR

RESEARCH INTERESTS

Physics-informed machine learning Scientific machine learning Computational physics Numerical simulations Finite-element method Reduced-order modeling Dynamical systems HPC Parallel programming

PROGRAMMING SKILLS

Programming Languages: Python Matlab Julia Fortran C/C++ VB.NET

Machine Learning: TensorFlow PyTorch JAX Flax PyMC scikit-learn Pandas PySINDy

Other: Bash Git LaTeX FORPy

CITATIONS

Citations: 700 H-index: 11 Complete list of publications: \$\mathbb{g}\$ Google Scholar

SELECTED PUBLICATIONS

Accepted

Hamidreza Eivazi, Alikhani, M., Tröger, J. A., Wittek, S., Hartmann, S., & Rausch, A. (2024). Enhancing Multiscale Simulations with Constitutive Relations-Aware Deep Operator Networks. arXiv:2405.13759. https://doi.org/10.48550/arXiv.2405.13759

Published

Hamidreza Eivazi, Wittek, S., & Rausch, A. Nonlinear model reduction for operator learning. In The Second Tiny Papers Track at ICLR 2024. https://openreview.net/forum?id=Jw6TUpB7Rw

Published

J.-A. Tröger, **Hamidreza Eivazi**, S. Hartmann, S. Wittek, A. Rausch (2023). Efficient integration of deep neural networks in sequential multiscale simulations. PAMM 23 (4), e202300052. https://doi.org/10.1002/pamm. 202300052

Published

Hamidreza Eivazi, J.-A. Tröger, S. Wittek, S. Hartmann, A. Rausch (2023). FE² Computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28 (4). https://doi.org/10.3390/mca28040091

Dublichod

Hamidreza Eivazi, Wang, Y., & Vinuesa, R. (2024). Physics-informed deep-learning applications to experimental fluid mechanics. Measurement science and technology, 35(7), 075303. https://doi.org/10.1088/1361-6501/ad3fd3

ublished

Hasanuzzaman, G., **Hamidreza Eivazi**, Merbold, S., Egbers, C., & Vinuesa, R. (2023). Enhancement of PIV measurements via physics-informed neural networks. Measurement Science and Technology, 34(4), 044002. https://doi.org/10.1088/1361-6501/aca9eb

Published

Hamidreza Eivazi, M. Tahani, P. Schlatter, R. Vinuesa (2022). Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. Physics of Fluids. Physics of Fluids 34 (7). https://doi.org/10.1063/5.0095270

Published

Jardines, A., **Hamidreza Eivazi**, Zea, E., García-Heras, J., Simarro, J., Otero, E., ... & Vinuesa, R. (2024). Thunder-storm prediction during pre-tactical air-traffic-flow management using convolutional neural networks. Expert systems with applications, 241, 122466. https://doi.org/10.1016/j.eswa.2023.122466

Published

Hamidreza Eivazi, Le Clainche, S., Hoyas, S., & Vinuesa, R. (2022). Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Systems with Applications, 117038. https://doi.org/10.1016/j.eswa.2022.117038.

Published

Borrelli, G., Guastoni, L., **Hamidreza Eivazi**, Schlatter, P., & Vinuesa, R. (2022). Predicting the temporal dynamics of turbulent channels through deep learning. International Journal of Heat and Fluid Flow 96, 109010. https://doi.org/10.1016/j.ijheatfluidflow.2022.109010.

Published

Hamidreza Eivazi, L. Guastoni, P. Schlatter, H. Azizpour and R. Vinuesa (2021). Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence. International Journal of Heat and Fluid Flow, 90, 108816. https://doi.org/10.1016/j.ijheatfluidflow.2021.108816.

ublished

Hamidreza Eivazi, H. Veisi, M.H. Naderi, and V. Esfahanian. Deep neural networks for nonlinear model order reduction of unsteady flows. Physics of Fluids, 32(10), 105104. https://doi.org/10.1063/5.0020526.

TEACHING EXPERIENCE

2023-2024	Lecturer	Institute for Software and Systems Engineering TU Clausthal

Applied Deep Learning

2023-2024 Lecturer Institute for Software and Systems Engineering, TU Clausthal

Introduction to Artificial Intelligence

2021 Teaching Assistant University of Bologna & KTH Royal Institute of Technology

Data driven Methods in Engineering, Prof. R. Vinuesa

2020 Teaching Assistant SCI, KTH Royal Institute of Technology

Data-driven Methods in Engineering (FSM3001), Prof. R. Vinuesa

THESIS SUPERVISION

2024	Institute for Software and Systems Engineering, TU Clausthal	Supervisor: Prof A Rausch
/11/4	institute for Software and Systems Engineering. TO Clausinal	Supervisor: Prot A Rausch

Deep learning for prediction of capacity degradation in Li-ion batteries

2023 Institute for Software and Systems Engineering, TU Clausthal Supervisor: Prof. A. Rausch

Physics-informed neural operators for multiscale FE² computations

2020 Engineering Mechanics, KTH Royal Institute of Technology Supervisors: Profs. R. Vinuesa and P. Schlatter

Predicting the temporal dynamics of turbulent channels through deep learning

CONFERENCES

2024	International Conference on Learning Representations (ICLR)	Vienna, Austria.
2024	94rd GAMM Annual Meeting	Magdeburg, Germany.
2023	93rd GAMM Annual Meeting	Dresden, Germany.
2022	12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)	Osaka, Japan (Online).
2021	13th ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements (ETMM13)	Rhodes, Greece (Online).
2019	The 32nd Nordic Seminar on Computational Mechanics.	Oulu, Finland.

SERVICE TO THE COMMUNITY

LANGUAGES

SPORT

Reviewer for:

Physics of Fluids - Physical Review Fluids - Scientific Reports - Data in Brief - Soft Computing and more Persian - native English - proficient German - rudimentary

Professional Basketball Player (2005 - 2011) Basketball Coach (3 rd Degree)

REFERENCES

Prof. Dr. Andreas Rausch

Institute for Software and Systems Engineering, Technical University of Clausthal, Clausthal-Zellerfeld, Germany

C

+49 5323 727177

andreas.rausch@tu-clausthal.de

Prof. Ricardo Vinuesa

 $\underline{\text{FLOW}}, \textbf{Engineering Mechanics}, \textbf{KTH Royal Institute of Technology}, \textbf{Stockholm}, \textbf{Sweden}$

+46 8 790 71 52

rvinuesa@mech.kth.se